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ABSTRACT

This paper reviews recent applications of Monte Carlo methods for the study of cation ordering in
minerals. We describe the program Ossia99, designed for the simulation of complex ordering processes
and for use on parallel computers. A number of applications for the study of long-range and short-range
order are described, including the use of the Monte Carlo methods to compute quantities measured in
an NMR experiment. The method of thermodynamic integration for the determination of the free
energy is described in some detail, and several applications of the method to determine the
thermodynamics of disordered systems are outlined.
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Introduction

THE Monte Carlo (MC) method was invented as a
tool to generate con� gurations of a system from
which to calculate thermodynamic averages. It is
an ideal tool for the computational study of
ordering processes in solids when the energy of a
con� guration can be described by a model
Hamiltonian. The MC method, which is described
in detail in the following section, is simple to
implement, but extremely powerful in that it
allows the generation of many con� gurations of a
sample from which thermodynamic averages can
be calculated.

In this paper we describe the implementation of
a MC strategy for the simulation of cation
ordering in minerals, which is based on the use
of model interactions as discussed in the previous
paper (Bosenick et al., 2001a), and which has

been used in a wide variety of applications
(Thayaparam et al., 1994, 1996; Dove, 1999;
Dove et al., 1996, 2000; Bosenick et al., 2000;
Warren et al., 2000a,b). In fact, the basic
equations and their implementation are appro-
priate for any system with atomic ordering,
including metal alloys and ceramic oxides.
However, in this paper we are particularly
motivated by ordering processes such as the
ordering of Al/Si cations on tetrahedral sites or
Mg/Al cations on octahedral sites, and even more
complicated ordering processes. Thus the basic
Hamiltonian expressions and analysis tools
discussed in this paper are those most appropriate
for these types of ordering processes. The MC
method can be used for the study of systems with
ordering phase transitions, solid solutions in
which there is no long-range order, and non-
convergent ordering processes. The MC method
will give information about both long-range and
short-range order. We describe here a number of
examples of the use of the MC method for studies
of a wide range of ordering processes.
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One of the purposes of this paper is to describe
the details of an implementation of the MC
method for massively parallel processor (MPP)
machines. These are computers that contain many
separate processors, and which therefore can
perform many calculations in parallel. There are
several ways in which a simulation procedure can
be parallelized for MPP machines, because there
are usually several parallel aspects to the problem.
Some of these are inherent to the simulation
method, and some to the scienti� c applications
using the methods. We will discuss these issues
with respect to the implementation for MPP.

The discussion of the MC method as applied to
the study of cation ordering is developed
following speci� c approaches, with a common
set of examples linking the separate aspects of the
discussions. In the next section we describe the
MC method, its application to the study of cation
ordering processes, and our implementation using
MPP machines. We then discuss the use of MC
methods to study long-range order, followed by a
discussion of calculations of short-range order and
the link to NMR experiments. The third area of
discussion is the application of thermodynamic
integration methods to determine thermodynamic
properties.

The Monte Carlo method

The basics of the Monte Carlo method
The simplest implementation of the MC method is
for a system containing spins that point up or
down, which are represented by the variable s
with values +1 and 1 respectively. Consider the
case of a simple antiferromagnetic Ising
Hamiltonian,

H = J
i j

sisj

where the angle brackets are used to denote that
the sum is over all relevant pairs of neighbouring
spins i and j. At zero temperature, if J > 0, the
lowest energy state has neighbouring spins of
opposite value, giving the most negative energy
allowed. On heating, the entropic term in the free
energy allows some of the spin values to change
sign, and eventually at a temperature above a
critical temperature all spins have equal prob-
ability of having each of the two possible values.
There is no analytic expression for the free energy
of this Hamiltonian in three dimensions, and in a
case like this the MC method provides a
computational method to study the behaviour of

the Hamiltonian. We will discuss later how the
case of cation ordering can be represented by a
Hamiltonian that is very similar to the Ising
Hamiltonian, with the spin variables being used to
de� ne the occupancy of a given site.

The MC procedure is relatively straightforward
in principle (Yeomans, 1992). We consider a
sample containing many spins with a Hamiltonian
of the form of the Ising model, and we are
interested in the behaviour at temperature T.
Suppose that a possible change in the system
causes an energy change E ? E + DE. In the MC
method a change in the con� guration is proposed
at random. For the Ising model, this will
correspond to changing the sign of a spin
chosen at random. If the energy change is
negative or zero, the change is accepted. On the
other hand, if the change in energy is positive, the
change is accepted with probability

P(E ? E + DE) = exp( bDE)

where b = 1/kBT. This allows for changes that are
unfavourable with respect to energy, but of course
some of these changes will be favourable with
respect to the free energy because of the
corresponding increase in entropy, and they can
be accessed through the normal thermal � uctua-
tions. The MC method allows for the calculation
of a representative set of states in the total phase
space of the system, with the correct thermo-
dynamic weighting (i.e. higher energy states are
generated less often). The procedure of proposing
and testing changes in the con� guration, followed
by accepting or rejecting them, is repeated for
many steps. If the system is started in a non-
equilibrium state, the � rst steps will correspond to
the system relaxing to an equilibrium state. Since
con� guration changes corresponding to large
displacements of ions (e.g. swapping a pair of
ions many unit cells apart) can occur, the kinetics
of this process are very different to those of the
real system. As a result, kinetic barriers in the real
system are often eliminated in the MC method,
but if the set of possible trial changes is not large,
equilibrium can still be hard to reach.

The con� gurations generated after a reasonable
period of relaxation can then be used to perform
calculations of average properties. For example,
the order parameter in the Ising model will have
the form

Q
1
N j

sj
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where the speci� c signs depend on the actual site
in the lattice. In the MC method, it is possible to
calculate the order parameter for each con� gura-
tion, and then simply obtaining the grand average
Q after many steps. Since the MC method

ensures that each con� guration has the correct
thermodynamic weighting, the average calculated
from the MC method is a good approximation to
the true thermodynamic average. Similarly the
average energy E can also be calculated. If one
also calculates the corresponding mean squared
values Q2 and E2 , the susceptibility and heat
capacity associated with the ordering interactions
can be obtained from standard thermodynamic
equations (Yeomans, 1992):

w = b( Q2 Q 2)

C = kBb2( E2 E 2)

For accurate calculations, it is necessary for
the MC simulation to sample many con� gura-
tions. In the MC method, as in any simulation
method, the issue of statistical sampling is
critical, and there will be errors associated with
any calculation that re� ect the quality of the
statistical sampling of the complete set of
con� gurations. For quantities that depend on
the differences between averages, as in the
equations for w and C, the issue of statistical
sampling is even more critical. Coupled with the
issue of the need to generate many MC
con� gurations for statistical accuracy is the
issue of sample size. At an ordering phase
transition, the values of both w and C will
diverge. At temperatures close to a second-order
phase transition, the � nite size of the sample will
cause these diverges to be rounded. This problem
is minimized (but never removed) by using
larger samples. This will be illustrated in one
of the examples discussed later in this paper.

Implementation for cation ordering

In the previous paper (Bosenick et al., 2001a) we
showed that the energy of an ensemble containing
two types of atoms, which we labelled A and B,
can be represented as

NAAJ + E0

where NAA is the number of A A bonds, E0 is a
constant term, and the exchange energy J is
written as

J = EAA + EBB 2EAB

The dependence on the number of B B and
A B bonds is subsumed into the two terms in the
energy, since the numbers of both types of bonds
are completely determined by NA A. In the
preceding paper (Bosenick et al., 2001a), we
outlined how this energy expression can be
generalized for different cases, and how it will
be expanded by taking account of different types
of neighbouring atomic sites.

By itself, this energy expression is not
particularly useful for MC simulations, since it
is effectively an ensemble sum, and we will be
interested in the ordering on individual sites in
order to calculate quantities such as the order
parameter. We therefore need to de� ne a variable
associated with each site that characterizes the
occupancy of this site. Using the two-atom
example, we can de� ne a variable Sj associated
with site j such that Sj = 1 if the site is occupied by
an A atom, and Sj = 0 if it is occupied by a B
atom. If we take two sites, i and j, the product SiSj

= 1 if both sites are occupied by A atoms, and the
product is zero otherwise. Thus we have

NAA =
i j

SiSj

We use the bracket notation i j in the
summation to denote a sum over all interactions
(each counted once) rather than a double sum over
all atoms (which would count each pair of atoms
twice) we will use this nomenclature
throughout this paper. Similarly, the number of
A atoms is simply given by

NA =
j

Sj

The energy can therefore be expressed in the
form of the following Hamiltonian:

H =
i j

JijSiSj +
i

mjSj

where the � rst term is the energy associated with
the bonds and the second is a chemical potential
that operates if A atoms prefer speci� c sites in the
crystal. The dependence of the exchange interaction
Jij on the speci� c bond re� ects the fact that it will
be different for different types of neighbours. For
example, usually the values of Jij are not found to
be signi� cantly different from zero when sites are
separated by a large distance, and the largest values
of Jij are found for near-neighbour sites. The form
of the exchange interactions for different cases is
discussed in more detail in the preceding paper,
together with the methods used to obtain their
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values from empirical force models or quantum
mechanical calculations (Bosenick et al., 2001a).

It is common to use a ‘spin variable’ to de� ne
the occupancy of an atomic site for the case where
there are two types of atoms. One such variable
can be de� ned as

sj = 2Sj 1

The spin variables sj have values +1. When
we sum over interacting sites (i.e. including only
bonds with a common value of J) we have terms
in the Hamiltonian of the form

i j

SiSj
zN
4

z
2 j

sj
1
4

i j

sisj

The � rst term is clearly a constant. If there is no
change in composition, the second term will also
be a constant, or else it can be represented by a
chemical potential. The third term is the
correspondence to the bond energy. The usual
chemical potential term can be added as

j

Sj
N
2

1
2 j

sj

The main point is that there is � exibility in how
the site variables (S, s or some variation of these)
and hence the Hamiltonian are expressed,
although some care will always be needed to
ensure that the correct factors are transferred
between different representations.

When there are more than two cations, the
variables used to describe the site occupancy will
need to be more than simple two-valued
functions. For example, if there are n cations,
we can replace the site variable S by the vector S
of length n, which will contain zero values
everywhere except for the element corresponding
to the label of the cation on the site. Then the
Hamiltonian can be written in matrix form:

H
1
2

i j

ST
i Jij Sj

j

mT
j Sj

For example, if the sample contained Al, Mg
and Fe cations, the site variables can be de� ned as

S Mg
1
0
0

S Al
0
1
0

S Fe
0
0
1

It may be more convenient in this case to store
the index of the non-zero element of S on each

site rather than the whole vector (i.e. the numbers
1, 2 or 3 to represent Al, Mg or Fe in this
example). J and m are now of matrix form. In this
example, the exchange matrix J would be written
in diagonal form as

J
JAl Al 0 0

0 JMg Mg 0
0 0 JFe Fe

Implementation on a parallel computer: Ossia99

Many scienti� c problems have parallelism in
several different ways. The actual MC simulation
may be parallel in its basic construction, since it
involves performing similar operations on many
atoms. One can imagine a strategy of splitting the
ensemble across many processors and updating
several sites at once. Or one could repeat the same
simulation on each processor, each having a
separate list of random numbers, in order to
improve statistical sampling and thereby reduce
the total running time. Likewise, the simulation
can be run with a different temperature on each
processor. Each approach represents a different
type of parallelism in the problem.

We usually tend to work with the third strategy.
This is partly motivated by the need to perform
simulations at many state points for the calcula-
tion of the thermodynamics, as discussed below,
and the exploitation of this aspect of the
parallelism of the problem is easier to implement
and more ef� cient than splitting a single
simulation over many processors.

We have developed a program called Ossia99
for performing MC simulations of cation order on
parallel computers. The program uses the
Message Passing Interface (MPI) protocol in the
programming to allow information to be passed
between processors. The amount of communica-
tion that is required is kept to a bare minimum by
only passing variables at the start, and then
collecting all results only at the end. Writing to
� le is therefore left to the end. The process of
reading in data, such as the range of temperatures,
values of exchange interactions, and neighbour
lists (discussed in more detail below), followed by
assigning initial conditions for each processor, is
carried out on the master processor. All relevant
information is then passed to all the other
processors, with each processor being assigned a
subset of all the MC runs that are required. Each
processor performs one equilibration run and one
production run for each state point assigned to it.
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During the production run various running
averages are collected, and at the end of the run
these are processed into a useful form. At the end
of all the production runs the results are passed
back to the master processor, sorted into an
appropriate order, and then printed by the master
processor. Each individual processor can also print
out its � nal con� guration to an assigned � le. The
main operation of Ossia99 is illustrated in Fig. 1.

Although written for parallel computers,
Ossia99 runs equally as ef� ciently on a single-
processor workstation. Ossia99 assumes the use of
Hamiltonians of either scalar or matrix forms, and
allows for the use of a chemical potential.
Extension for many-site interactions is straightfor-
ward, as was needed in our simulations of Mg/Al
ordering in spinel (Warren et al., 2000a,b)
discussed below as one of our main examples.

The con� guration is de� ned in terms of a lattice
of unit cells, as in a crystal. Each unit cell
contains a set of labelled cation sites. The
occupancies of the cation sites in each unit cell
are described using the vector S described earlier
(speci� cally by giving the index of the non-zero

element), which allows the simulation of systems
containing more than two ordering cations. The
MC code is not given information about the
structure of the crystal, but only about the
topology of the bonds between sites. This
information is provided through the use of
neighbour lists, which give, for each site in each
unit cell, the label and neighbouring unit cell of
each interacting site. Separate neighbour lists for
each site are de� ned for each type of exchange
interaction, and are given in terms of the relative
position in the lattice of the unit cell containing
the neighbouring site. For example, the site #1 in
each unit cell may interact with site #3 in the
same unit cell and site #3 in the neighbouring unit
cell along the x direction. The neighbour lists are
de� ned in the input data � le, and can be quite
extensive there is a separate neighbour list for
each type of interaction. One of the merits of the
spreadsheet methods discussed in the previous
paper (Bosenick et al., 2001a) is that the
neighbour lists can be generated automatically.
The various exchange interactions are de� ned
using a set of matrix functions J.

FIG. 1. Flowchart illustrating the operation of Ossia99.
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An order parameter can usually be de� ned
using the following approach. Suppose for a given
site in the unit cell the occupancy with respect to
one given type of cation averaged over all unit
cells is sj, such that sj,0 is the average occupancy
at T = 0 in the ordered structure, and sj,? is the
average occupancy as T ? ?. The order
parameter for this site is then de� ned as

Qj
sj sj

sj 0 sj

This normalization has been chosen such that Q
= 1 for complete long-range order, and usually the
site occupancy will be unity when Q = 1. In
complex systems, there may not be an anti-
ordered state with Q = 1. An overall order
parameter can be de� ned by summing over all
types of cations and over all sites in the unit cell if
there is only one overall ordering process, or else
different order parameters that are associated with
speci� c sites can be treated separately. Ossia99
allows the calculation of the separate order
parameters for different sites, and allows sj,? to
be calculated assuming a completely random
mixture at high temperatures or to be given in
the input � le. The occupancies of the ordered
structure need to be given as input, either by
specifying which cations will occupy which sites,
or by giving the occupancies directly. Ossia99
allows three methods to de� ne the order
parameters. In the � rst, the disordered occupan-
cies sj,? are calculated as random averages of all
the cations used in the simulation. In the second,
the disordered occupancies sj,? are given in the
input � le. A third option allows the weighting of
each site towards the order parameter to be set
independently, to allow for very general order
parameters or semi-ordered states where ordered
occupancies will not all be unity. After deciding
relative weightings of sites, the exact coef� cients
and an additive constant can be found by
requiring Qrandom = 0 and Qordered = 1. In many
ordering processes the symmetry of the system
may allow several ordered states to be degenerate.
An example is in the ordering of cations in the
mica sheets discussed below. In this case it is
useful to de� ne several order parameters and
compute each of them. As one ordering process
will dominate, all but one of the order parameters
should have zero value, but which one may not be
known in advance.

It is always possible that, with a complex
Hamiltonian, the structure of the ordered phase

may not be known in advance. In such a case the
appropriate strategy is to plot the structure after a
long run having cooled from an initial random
con� guration. Ossia99 allows for the � nal
con� guration on each processor to be written to
a � le in a form suitable for a structure-plotting
program such as Cerius21 or CrystalMaker1.
This is also useful for analysing the structures of
partially ordered or disordered structures, and will
give information relevant for constructing appro-
priate order parameters.

The main design feature of Ossia99 is that it
runs simulations at many temperatures, with
different temperatures spread over the different
processors. It is possible to start the simulation in
an ordered (cold start) or disordered (hot start)
con� guration. It is also possible to start with a
partial degree of order (warm start) for cases
when chemical composition is not commensurate
with ordering at a unit-cell level. This is
implemented by de� ning the sites that are
occupied by one set of cations, and replacing
any of these at random by another set of cations
subject to the � nal composition required. The
range of temperatures can be set to have equal
increments, starting from either cold or hot, or
else can be run with equal increments of 1/T,
again starting from either cold or hot. The latter
type of increment is particularly useful for
applications with thermodynamic integration as
discussed below.

Ossia99 is available from http://www.esc.cam.
ac.uk/ossia, as also is an earlier version, Ossia98,
which was designed speci� cally for the case of
two types of ordering cation. The www page also
provides a detailed manual.

Examples of long-range ordering behaviour

Simple Al/Si ordering in a three-dimensional structure
In Fig. 2, we show the calculation of the order
parameter Q and inverse susceptibility w 1

calculated for an equal mixture of two types of
cation on an ideal tridymite lattice (Dove, 1999;
Dove et al., 2000). The results are typical of the
ordering behaviour of a simple system, with a
continuous change in Q on approaching the
transition temperature from below. The results
are not equivalent to those given by a simple
mean-� eld type theory, such as Bragg–Williams,
where one would expect the following two
relationships (Yeomans, 1992):

Qmft ! (Tc T)1/2; wmft ! |Tc T| 1

226

M.C.WARREN ETAL.

http://www.esc.cam.ac.uk/ossia
http://www.esc.cam.ac.uk/ossia


These mean-� eld relationships are not found in
any of the examples of ordering phase transitions
we will show in this paper. Instead, Q tends to fall
more rapidly on heating towards Tc. Most of the
models we investigate fall into classes for which
the following variations are found (Yeomans,
1992)

Q(T ? Tc) ! (Tc T)b; w(T ? Tc) ! |Tc T| g

with b < 1/2 (typically closer to 1/3 for three-
dimensional systems, or 1/8 for two-dimensional
systems), and g > 1 (typically closer to 4/3 for
three-dimensional systems).

The results shown in Fig. 2 highlight the point
(made earlier) about � nite sample sizes causing a
rounding of the phase transition. This can be seen
as the tail in the order parameter above the phase
transition, instead of the order parameter falling
sharply to zero. Rounding effects can also be seen
in the plot of w 1.

Ordering in two-dimensional hexagonal nets
representative of cation ordering in mica sheets

In Fig. 3 we show a hexagonal net representing
the layers of tetrahedral or octahedral sites in a
mica. Models of the ordering interactions
(Bosenick et al., 2001a; Palin et al., 2001) have
shown that the four exchange interactions de� ned
in Fig. 3 are positive for both Al/Si and Mg/Al

ordering, with J1 having the largest value and J3

the smallest. Thus ordering is driven by the need
to minimize the number of neighbours containing
the same types of cations. For a 1:3 ratio of two
types of cations, whether Al:Si on the tetrahedral
sites or Mg:Al on the octahedral sites, the ordered
structure within a layer is found to be that shown
in Fig. 3. This is distinguished from other possible
ordering processes by the sign of J4 (Palin et al.,
2001). The MC simulations were performed by
Al/Si ordering in the tetrahedral sites of
muscovite, K2Al4(Si6Al2O20)(OH)4 (Palin et al.,
2001). The ordering phase transition is very sharp,
as indicated by the temperature dependence of the
order parameter, heat capacity and susceptibility
shown in Fig. 4. In this � gure we compare the
ordering within isolated layers with the ordering
when we included three-dimensional interactions
between the tetrahedral sheets. The main details
are very similar in both cases, except that in the
three-dimensional simulation the transition has
been shifted to a slightly higher temperature and
the phase transition is even sharper. Detailed
analysis of the results for the order parameter
show that on heating up to Tc the order parameter
follows the analytical form of the two-dimen-
sional Ising-model order parameter (Yeomans,
1992):

Q(T ? Tc) ! (Tc T)1/8

0 0.2 0.4 0.6 0.8 0.5 0.6 0.7 0.8 0.9 1

c –1

0.0

0.2

0.4

0.6

0.8

1.0

Temperature / J

Q

FIG. 2. Temperature dependence of the order parameter Q and inverse susceptibilit y w 1 for a system containing
equal numbers of Al and Si cations on a kalsilite (KAlSiO4 ) network of tetrahedra l sites, obtained from MC

simulations. Different coloured points represent different simulation runs.
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The phase transition in the three-dimensional
simulation could only be studied starting from a
fully ordered structure and heating from cold. It
appeared that if the simulation started from a
completely random arrangement of cations, the
individual layers would order independently on
cooling, and it was not possible for the ordered
arrangements in each layer to then shift to be in
register with their neighbouring layers. Whilst this
highlights one of the intrinsic problems of the MC
method, namely that of having only a � nite
simulation time, it does show that the kinetic
problem may be also be faced in establishing
long-range order in natural samples.

Using a warm start (as de� ned earlier), it was
possible to study how the ordering process within
a layer will change when the composition changes
from 1:3 towards 1:7 as found in some micas. The
results are shown in Fig. 5. Although a clear
phase transition is observed with composition of
1:3, no ordered state was found for a single layer
with 1:7 composition. In this case, the interactions
do not have suf� cient range to form a continuous

network between sparse Al cations. As the
concentration of Al decreases from 25%, this
loss of any long-range ordering process can be
seen in Fig. 5.

Coupled Al/Si and Mg/Al ordering in mica structures

We have explored coupled ordering in the mica
phengite, K2(Al3Mg)(Si7Al)O20(OH)4. This is
similar to muscovite, except that there is a
coupled-charge substitution of replacing an Al
by Mg in the octahedral layer and the replacement
of an Al by Si in the tetrahedral layers. Now we
have two ordering processes, Al/Si in the
tetrahedral layers, and Mg/Al in the octahedral
layers, with a coupling between the two layers.
The development of an appropriate model
Hamiltonian is sketched brie� y in the previous
paper (Bosenick et al., 2001a). The exchange
interactions within both the tetrahedral and
octahedral layers favour the ordered patterns
shown in Fig. 3 for both types of layers.
However, we now have only half the number of

FIG. 3. Hexagonal net representing the two-dimensional layers of tetrahedral or octahedra l sites in the mica structure.
The two sizes/colours of spheres show the ordered patterns for a 1:3 ratio of two types of cations as given by the
exchange interactions for Al/Si (Palin et al., 2001) or Mg/Al ordering (from Bosenick et al., 2001a) as calculated
using the methods of Bosenick et al. (2001a). The four lines indicate the neighbour s for which exchange interaction s

were de� ned.
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Al cations in the tetrahedral sheets, and it was
shown in Fig. 5 that the tetrahedral sheets on their

own will not order with such a low Al:Si ratio.
However, ordering is possible when there are
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FIG. 4. Temperature dependence of the order parameter, heat capacity and inverse susceptibility , w 1, for Al/Si
ordering in the tetrahedra l sheets in muscovite, K2Al4(Si6Al2O20 )(OH)4, obtained from MC simulations performed
with and without three-dimensiona l interaction s between neighbourin g layers of tetrahedra (Palin et al., 2001). The

behaviour close to the transition temperature is like that of a two-dimensiona l Ising model.
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interactions mediated through other layers. In the
case of phengite, the MC simulations using the
model Hamiltonian give a more complex ordered
structure, as shown in Fig. 6. This shows an
octahedral layer with one of its neighbouring
tetrahedral layers. The exchange interactions
favour the formation of Al Al pairs on
neighbouring octahedral and tetrahedral sheets,
and this can best be achieved by having the
octahedral sites order in a way that is less
favourable for the interactions within the octahe-
dral layers. Speci� cally, the favoured layer
ordering has only third-neighbour Mg Mg
pairs, but the coupling with the tetrahedral
layers forces the ordering to have only second-
neighbour Mg Mg pairs. The ordering in the
tetrahedral layers is based on that obtained in
muscovite, but with half of the Al replaced by Si.
This arrangement ensures that there are no
Mg[6 ] Al[4 ] neighbours, as seen in Fig. 6.

The MC simulations also showed an interesting
ordering sequence. On cooling (heating), the
ordering (disordering) in the tetrahedral layers

does not lock in as a single process, but as a two-
stage process. The � rst process on cooling
involves half the tetrahedral sites becoming
occupied by Si, and the other half being
disordered with 75% occupancy by Si and 25%
occupancy by Al. These sites are indicated in
Fig. 6. This � rst process is coupled with the
ordering on the octahedral sites. The second set of
tetrahedral sites only order at a temperature about
half of that of the � rst ordering process. The
details of this ordering sequence are still being
investigated, but are described here to illustrate
the point that relatively complicated behaviour
can arise when a system contains competing
ordering processes.

Non-convergent ordering in spinel, MgAl2O4

The ordering process in spinel involves exchange
of Mg and Al cations between octahedral and
tetrahedral sites. This process does not involve a
change in symmetry and therefore does not
precipitate a phase transition, but there are many
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three compositions. The phase transitions are very sharp, and variations are better seen through plots of Q8 than Q,
following the comment in the text that in two dimensions the temperature dependence of Q is Q ! (Tc T)1/8.
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aspects of the ordering process that resemble the
behaviour associated with a phase transition. This
type of ordering process is called non-convergent
ordering, and although there is a not a distinct
phase transition, many systems displaying non-
convergent ordering processes have a temperature
dependence that can be described using methods
commonly applied to the study of phase
transitions (Carpenter et al., 1994; Carpenter and
Salje, 1994).

An order parameter can be de� ned that is
determined by the occupancy of the cations on the
two types of sites. The MC simulations were
performed using a model Hamiltonian that was
parameterized using ab initio quantum mechanics

methods (Warren et al., 2000a,b; Bosenick et al.,
2001a). The calculated temperature-dependence
of the order parameter is shown in Fig. 7, where it
is compared with experimental measurements
obtained by neutron diffraction data (Redfern et
al., 1999). The experimental data at low
temperatures are not able to reach equilibrium
values because of kinetic constraints, and the
comparison with the simulation data is not
relevant. At temperatures above 900 K, where
the experimental data do correspond to equili-
brium, the agreement of the MC results with the
experimental data is very good. The remarkable
point about the level of agreement is that it was
achieved without the use of any experimental data

FIG. 6. The ordered structure of phengite , K2(Al3Mg)(Si7Al)O20(OH)4, as predicted by the MC simulation using the
model Hamiltonian developed by Bosenick et al. (2001a). The structure shows the octahedra l layer of Mg/Al cations
and one neighbourin g tetrahedral layer of Al/Si cations. The cations in both layers are arranged on a hexagona l grid,
with the two grids displaced with respect to each other. The second tetrahedral layer attached to the octahedra l layer
is displaced in the opposite direction. The tetrahedra l layer is drawn above the octahedra l layer. The Al and Si
cations in the tetrahedra l layer are coloured blue and yellow respectively , and the Mg and Al cations in the
octahedra l layer are coloured red and green respectively. The red vertical arrows indicate the chains of tetrahedra l
sites that remain disordered with respect to the positions of the Al and Si cations on � rst cooling below the

temperature at which the octahedra l layer begins to order.
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in the development of the model Hamiltonian.
The good agreement provides some validation of
the use of the model Hamiltonian, as discussed in
Bosenick et al. (2001a).

Cation ordering in the pyroxene diopside Ca-Tschermak
solid solution

In the solid solution diopside–Ca-Tschermak,
Ca[MgxAl1 x]

VI[Si1+xAl1 x]
IVO6 with 0 4 x 4 1,

the substitution of Al3+ for Si4+ on the tetrahedral
sites is coupled with the substitution of Al3+ for
Mg2+ on the M1 octahedral sites. In the end-
member Ca-Tschermak, where x = 0, half of the
tetrahedral sites are occupied by Si and half by Al
cations. For this pyroxene, there are four possible
long-range ordered structures with complete
ordering of Al and Si on the tetrahedral chains
consistent with the Al Al avoidance for nearest
neighbour tetrahedral sites along the chains. Their
corresponding space groups are C2, C1̄, P2/n and
P21/n (Okumara et al., 1974). Experimentally,
only the disordered high-temperature structure
(C2/c) has been observed. Static lattice energy
calculations predict the P21/n structure to be the
most favourable ordering state energetically. The
MC simulations of the ordering process in
Ca-Tschermak based on a model Hamiltonian

constructed from empirical potential calculations,
as described in the previous paper (Bosenick et
al., 2001a), place the transition from C2/c to
P21/n at a temperature of ~1500 K. As will be
described below, NMR data indicate that this
value is an overestimate (Bosenick et al., 1999a),
and a one-point temperature calibration would
place the transition temperature just below
1000 K. However, at temperatures below
~1400 K, Ca-Tschermak is thermodynamically
unstable with respect to conversion to grossular
and corundum (Gasparik, 1984). This explains
why no ordered Ca-Tschermak has been found
experimentally. On the other hand, the effects of
the ordering interactions will be seen in the short-
range order at temperatures substantially above
Tc, well into the stability range of Ca-Tschermak.

In the solid solution, x > 0, there is also
ordering of Al and Mg on the octahedral sites, in
addition to ordering of Al and Si on the
tetrahedral sites. These two ordering processes
are not independent because there are interactions
between the cations in the tetrahedral and
octahedral sites. Because of this complex ordering
behaviour, it is not straightforward to derive
possible ordering patterns for the solid-solution
composition by theoretical considerations as
could be done for Ca-Tschermak. The lowest-
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FIG. 7. Temperature dependence of the order parameter for Mg/Al non-convergen t ordering in spinel calculated by
MC simulations (Warren et al., 2000a,b) and compared with experimenta l neutron diffraction data (Redfern et al.,
1999). The experimenta l data for temperatures below 900 K are lower than equilibrium values because of kinetic
limitations. Three different experimental runs are coloured differently. The ordering in these runs follows different

kinetic histories, leading to different degrees of order at low temperatures.
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energy state, based on a set of exchange
interactions determined by lattice energy calcula-
tions (Bosenick et al., 2001a), can be determined
for any composition by MC simulations. In the
case of x = 0.5, Di50:CaTs50, the lowest energy
con� guration given by the MC simulations had a
repeating Al Si Si Si arrangement along
t h e t e t r a h e d r a l c h a i n s , a r e p e a t i n g

Mg Al Mg Al arrangement along the
octahedral chain, and relative arrangements on
the chains of tetrahedra and octahedra that form
Al Al linkages in neighbouring tetrahedral and
octahedral sites. In comparison to the high-
temperature disordered structure with space
group C2/c, the ordered structure has a unit-cell
that has been doubled in the c direction, with
space group C2. This structure is shown in Fig. 8.
The MC simulations of the ordering process show
that the transition temperature for this ordering
process is substantially below that of the Al/Si
ordering in the CaTs end-member.

Short-range order

Short-range order in the MC simulations and NMR data
The energy computed in a MC simulation arises
directly from the short-range interactions, which
means that information about the short-range
structure is readily available from the simulations.
There may be many ways of de� ning the short-
range structure, but the most useful procedure for
many cases is to compute the components of the
short-range structure that are detected in an
experiment.

The most direct experimental technique for the
measurement of short-range order is magic-angle
spinning (MAS) NMR (Putnis and Vinograd,
1999). In principle, the spectra from this
technique for appropriate isotopic species will
give a single peak for each cation of the species in
each different environment. There are two factors
that determine the frequency of each peak in the
MAS-NMR spectra. The � rst is that the speci� c
type of site can have a signi� cant effect. For
example, the crystal structure of cordierite,
Mg2Al4Si5O18, has two distinct types of tetra-
hedral site, one of which is in a six-membered
ring of tetrahedra, and the other in a four-
membered ring. The frequencies of the peaks in
the spectra can be correlated with the type of site
if the types of site are suf� ciently different. In
cordierite the two types of site can clearly be
distinguished in the MAS-NMR data (Putnis et
al., 1985). However, the intrinsic resolution of the

MAS-NMR spectra means that atoms in very
similar sites are hard to distinguish. So if there is a
structural phase transition, whether displacive or
cation order/disorder, that causes two sites that are
equivalent in one phase to become inequivalent in
the other, it is quite possible that the splitting of
the peak will not be easily resolved. The second
factor is that there are shifts in the positions of
peaks due to differences in the local environments
of sites that are equivalent on average. For
example, in cordierite it is possible to distinguish
separate peaks in the spectrum associated with Si
having different numbers of Al cations (from 0 to
4) in the neighbouring tetrahedral sites (Putnis et
al., 1985). For the pyrope–grossular garnet solid
solution it was possible to resolve the effects on
the Si-MAS-NMR spectra of changing the
number of Mg/Ca cations in both the � rst and
second co-ordination shells (Bosenick et al.,
1995, 1999b). These different environments
correspond to different types of small clusters of
cations. In principle, the intensities of the peaks
associated with each type of environment in any
system will directly give the relative proportions
of the different types of clusters. From an analysis
of the statistics of bonds (as discussed in the
previous paper, Bosenick et al., 2001a) it is also
possible, at least in principle, to use the MAS-
NMR data to determine the numbers of other
types of bonds, such as the numbers of Al Al
linkages.

The relative proportions of the clusters of
cations corresponding to those detected in an
MAS-NMR experiment are easy to calculate in a
MC simulation with Ossia99 (although the
de� nitions need to be given by the user at the
start of the simulation, and some manipulation of
the code will be necessary). The calculation of the
MAS-NMR cluster proportions is useful in three
respects. First, it enables comparison to be made
between MAS-NMR results and the thermo-
dynamic state of the material, which can be
calculated in the MC simulation using methods
outlined later. Second, the comparison of the MC
results with MAS-NMR data enables the simula-
tion to be better calibrated. For example, it may
be shown whether the temperature scale in the
simulations, which is set by the energy scale of
the model Hamiltonian, is accurate. Third,
assuming that the energy scale of the model is
accurate, the correlation of MC results and
experimental MAS-NMR data for materials that
are prepared under non-equilibrium conditions
may provide information about the state of
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ordering and the balance between long-range and
short-range order in the material.

The discussion here has assumed that the MAS-
NMR data can be interpreted unambiguously.
However, it is often the case that peaks in the
MAS-NMR spectra overlap so that it is not
possible to obtain the intensities of all individual
peaks separately. This was found for some of the

garnet compositions studied by Bosenick et al.
(1995). However, a good MC simulation will
facilitate interpretation of MAS-NMR data. This
is one of the applications that will characterize
our examples given below.

It is important to remark regarding the
comparison between experimental MAS-NMR
data and the results of the MC simulations that

FIG. 8. Predicted ordered structure of the 50:50 diopside–Ca-Tschermak structure. The SiO4 tetrahedra are coloured
blue, the MgO6 octahedra are coloured yellow, and the AlO4 tetrahedra and AlO6 octahedra are coloured green. The
Ca cations are not drawn in order to assist clarity. The ordered structure was obtained by MC simulation cooling to

low temperature , using a model Hamiltonian with exchange interaction s described in Bosenick et al. (2001a).
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one might expect that even a poor model could
give a reasonable level of agreement with
experimental data. This is because only a small
fraction of all possible con� gurations are
encompassed in the subset between fully ordered
and fully disordered, and if the MC Hamiltonian
gives the correct ordered structure it may be that
the main features of the MAS-NMR data
(particularly whether peaks are strong or weak)
will be relatively easy to reproduce.

Short-range order in the garnet pyrope^grossular solid
solution

In Fig. 9 we show the temperature dependence of
the intensities of the stronger MAS-NMR peaks in
the garnet pyrope–grossular solid solution,
(MgxCa1 x)3Si3Al2O12, calculated in the MC
simulations and measured experimentally
(Bosenick et al., 1995, 1999b). In this case the
MAS-NMR technique is sensitive to the presence
of both � rst and second-neighbour shells of atoms
about the Si cations. The � rst shell contains
2 Mg/Ca cations, and the second shell contains
4 Mg/Ca cations. The � rst shell can be occupied
in three different ways: (2Mg0Ca, 1Mg1Ca or
0Mg2Ca), while there are � ve ways to occupy the
second shell (4Mg0Ca, 3Mg1Ca, 2Mg2Ca,
1Mg3Ca or 0Mg4Ca). The combination of
different � rst and second shell con� gurations
results in 365 = 15 different possible Mg/Ca
clusters. In Fig. 9 the clusters have been labelled
according to the dominant cation in the � rst and
second shell. For example, for Mg-rich composi-
tion, in the cluster (2,4) the � rst and second shell
are only occupied by Mg-cations, and in the
cluster (1,0) the � rst shell contains 1 Mg and 1 Ca
cation while the second shell has 4 Ca cations.

In principle, each of the 15 clusters should
correspond to an individual 29Si MAS-NMR
resonance. However, in practice some of the
clusters have very similar chemical shifts, and
therefore their peaks overlap in the MAS-NMR
spectra. Therefore, not all of the observed MAS-
NMR resonances can be assigned unequivocally
to speci� c clusters. In addition, depending on the
garnet composition, some of the clusters have a
low occupancy and their MAS-NMR peaks were
not observed experimentally. This may have led
to systematic errors in the determination of the
relative MAS-NMR resonance intensities which
will affect the comparison with the simulation
data. Another reason why the correspondence
between MAS-NMR intensities calculated in the

MC simulations and the experimental data is not
as good as possible could be related to
inadequacies in the simulation methods. For
example, the model used in the simulation is
symmetric for compositions either side of the
midpoint of the solid solution (Bosenick et al.,
1999a, 2000, 2001a,b), and this symmetry may
not be present in the experimental data (see
discussion in Bosenick et al., 2001b).

Aside from the details of the comparison
between the experimental data and the MC
simulation, one important aspect of the compar-
ison between the calculated and observed MAS-
NMR cluster probabilities is the extent to which
they depart from their random values, and how
the probabilities change as a function of
temperature. In this regard, the simulations have
mixed success in particular, they are better for
the dilute mixtures than for compositions nearer
50%. In the case of Mix 85:15, the simulations
re� ect the experimental data on Py85:Gr15 in that
there is little departure from the random values
and very little variation with temperature. For
Mix 75:25 the trends in the resonance intensities
observed in the MAS-NMR spectra of Py75:Gr25
synthesized at different temperatures are in
agreement with those predicted with the MC
simulations. The proportions of clusters (2,4) and
(1,4) increase, while those of clusters (2,3) and
(1,3) decrease simultaneously. However, in the
experiment, the proportion of cluster (2,4)
becomes larger than that of cluster (2,3) for the
lowest synthesis temperature. This crossover is
not predicted in the simulation.

Short-range order in muscovite

Our second example of the calculation of short-
range order is for Al/Si ordering in muscovite.
Figure 10 shows the calculated temperature
dependence of the Si MAS-NMR spectra, in
which different peaks correspond to different
numbers of Al neighbours. The MAS-NMR
spectra change on cooling as the short-range
order within the tetrahedral layers drives the
formation of long-range order. One striking point
is that the calculated intensities only approach the
values for completely random order at extremely
high temperatures (well above the melting and
vapour temperatures!).

There have been several MAS-NMR studies of
muscovite at ambient temperature, with attempts
to interpret the data in terms of different models
of order and ordering mechanisms (Herrero et al.,
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1985, 1986, 1987, 1989; Herrero and Sanz, 1991;
Circone et al., 1991). The experimental data were
obtained for different compositions, and values
extrapolated for the simulation samples are given
in Fig. 10. For both sets of data (Herrero et al.,
1987; Circone et al., 1991) the intensities of the

peaks in the MAS-NMR spectra, when compared
to the MC results, correspond to temperatures just
above the temperature at which long-range order
is established. At this temperature there is a
reasonable amount of short-range order. This
implies that muscovite is formed with a high-
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temperature distribution of cations that is then
frozen into the structure as a non-equilibrium state
of order. The point of interest here is that the MC
simulations were able to give a clear interpreta-
tion of the MAS-NMR results that was not
possible otherwise.

Short-range order in the diopside^Ca-Tschermak solid
solution

29Si MAS-NMR spectroscopy data for several
compositions in the diopside–Ca-Tschermak solid
solution series are shown in Fig. 11 (our own data
reported by Bosenick et al., 1999a, which are in
accord with the data of Millard and Luth, 1998).
In the end-member Ca-Tschermak, 29Si MAS-
NMR spectroscopy gives the Al/Si distribution
around the 29Si nuclei in the tetrahedral chains.
Figure 12a shows the temperature dependence of
the three MAS-NMR clusters (2Si0Al, 1Si1Al,
0Si2Al) from MC simulations. The relative peak
intensities observed for a synthetic Ca-Tschermak
synthesized at 1748 K match the MC occupancies
at a temperature of ~2700 K. When this data point
is used to perform a one-point temperature
calibration of the MC temperature scale, the
transition temperature for the ordering phase
transition is shifted from ~ 1500 K to below
1000 K (as discussed above in the section on
long-range order).

The 29Si MAS-NMR spectra of members of the
diopside-Ca-Tschermak solid-solution shown in
Fig. 11 have four broad resonances (Millard and
Luth, 1998; Bosenick et al., 1999a). Hence, in
addition to the Al/Si distribution on the two
neighbouring corner-sharing tetrahedra, the 29Si
MAS-NMR spectroscopy must also be sensitive
to different second-shell neighbours in the solid-
solutions. These second neighbours correspond to
three neighbouring M1 octahedra that are corner-
shared with the tetrahedron that contains a 29Si
nucleus. In the solid-solution, they can be
occupied in four different ways: 3Mg0Al,
2Mg1Al, 1Mg2Al or 0Mg3Al. We ignore the
fact that these three M1 octahedra are not
symmetrically arranged around the tetrahedron.
A combination of all possible � rst and second
shell con� gurations results in 364 = 12 different
clusters. The clusters will be labelled according to
the number of Al neighbours on tetrahedral and
octahedral sites, i.e. (nAlIV ,nAlVI).

The assignment of the resonance peaks in the
MAS-NMR spectra to the different clusters is
complicated by the fact that the substitution of Al

for Si in the neighbouring tetrahedral sites results
in a positive change in the chemical shift, whereas
the substitution of Al for Mg on the corner-
sharing octahedra results in a negative change in
the chemical shift. The absolute changes in the
chemical shifts should be larger for a substitution
in the 1st shell compared to a substitution on the
2nd shell, because of the smaller distance to the
MAS-NMR active nuclei. However, as only four
broad resonances are observed, in comparison to
the twelve possible clusters, it is clear that several
clusters must have similar chemical shifts and that
peak overlapping is present in the spectra. This
problem is not uncommon in the use of MAS-
NMR methods to study cation order, and the
following discussion will show how MC simula-
tions can be used to help interpret the MAS-NMR
spectra.

The temperature dependence of the relative
occupancy of the 12 clusters in Di50CaTs50
determined with MC simulations is plotted in
Fig. 12b. Above the transition temperature, there
are no dramatic changes in the cluster occupancy.
In the lower part of Fig, 12b, we compare the
experimental MAS-NMR peak intensities, with
two different MAS-NMR peak assignments, i.e.
the occupancies of those clusters that are believed
to overlap in the MAS-NMR spectra are summed
together.

The MAS-NMR peak assignment used in the
lower left part of Fig. 12b is based on the proposal
that the chemical shifts of clusters having 1, 2 and
3 octahedral Al are very similar, and hence that
the 29Si MAS-NMR is only sensitive to whether
Al is present in the second shell (n, Al) or not (n, 0)
(Millard and Luth, 1998; Putnis and Vinograd,
1999). The agreement between this interpretation
of the observed MAS-NMR intensities and the
MAS-NMR cluster occupancies from the MC
simulations is very poor. For example, the relative
intensity of the MAS-NMR peak at 80.6 ppm is
33% but the combination of the occupancies of
clusters (1,0) and (2,Al), where cluster (2,Al) is
the sum of clusters (2,1), (2,2) and (2,3), gives a
maximum relative intensity of 11%. These
discrepancies are unlikely to be due to inadequa-
cies in the MC simulations, but instead they
probably indicate that the peak assignment is not
correct. Based on the cluster occupancies from the
MC simulations, a modi� ed peak assignment has
been obtained, and is given in the lower right part
of Fig. 12b. This new assignment results in a
much better agreement with the observed MAS-
NMR peak intensities, and also gives a much
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better agreement with the experimental MAS-
NMR data for compositions Di75CaTs25 and
Di25CaTs75. The MAS-NMR data have thus
been interpreted using the MC results to give an

assignment that might not otherwise have been
found. This is an example of how the MC
simulation method is able to help to derive a
reliable MAS-NMR peak assignment, which

Diopside

Di75:CaTs25

Di50:CaTs50

Di25:CaTs75

Ca-Tschermak

+nAl{6}+nAl{4}

(0,0)

(2,Al)
(1,0)

(1,Al)
(0,0)

(2,0) (0,Al)

(2,3)

(1,3)

(0,3)

–60 –70 –80 –90 –100

NMR shift (ppm)

FIG. 11. 29Si MAS-NMR spectra of members of the diopside–Ca-Tschermak solid solution for several different
compositions , previously reported by Bosenick et al. (1999b) and consistent with the data of Millard and Luth
(1998). The labels represent the interpretatio n of Putnis and Vinograd (1999); the de� nitions are given in the text.
The arrows at the top show the directions of the shifts of the peaks due to increases in the number of Al cations in the

neighbouring octahedra l and tetrahedra l sites (Putnis and Vinograd, 1999).
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could not be obtained using self-consistency
arguments and theoretical considerations alone.

Thermodynamic integration

Background theory
Thermodynamic integration provides a route to
obtaining the free energy (and hence also entropy)
of ordering from MC simulations. The method is
not new, but it is not often documented in its

general form, and as far as we are aware it has not
been documented in an appropriate form for the
type of problem we are considering here. The idea
is to start from a model for which the free energy
is known exactly, and to work from that solution
to the free energy of the model being studied. The
important component of the theory is the relation
between the free energy F and the partition
function. In a discrete formalism, the partition
function Z is the sum over all states of the system:

(0,1)
(1,1)
(2,1)

(0 ,0)
(1 ,0)
(2 ,0)

(0,2)
(1,2)
(2,2)

(0,3)
(1,3)
(2,3)

C
lu

st
er

 o
cc

up
an

cy
 (

%
)

Di25:CaTs75

–77.8 ppm
–80.6 ppm
–84.2 ppm
–88.4 ppm

1000 2000 3000

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70 (0,0) + (1,Al)

(1,0)  + (2,Al)

(0,Al)

(2 ,0)

(0,0)  + (0,1)
+ (1,2) + (1,3)

(1,0) + (1,1)
+ (2,2)  + (2,3)

(0,2) + (0,3)
(2,0)

+ (2,1)

1000 2000 1000 2000 3000

Temperature (K)

c

FIG. 12. Calculation of 29Si MAS-NMR peak intensities by MC simulation: (a) (facing page) the Ca-Tschermak end-
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Z =
j

exp( bEj)

where b = 1/kBT (as before), and Ej is the energy
of the jth state. The energy can be represented by
the Hamiltonian for a given state point, in which
case we could write the partition function as

Z
exp bH q dq

dq j

exp bH qj

where q is the vector of the fundamental variables
of the system (such as atom positions), and is
either a continuous variable, as in the integral
representation, or a discrete variable, as in the
summation representation. For any quantity j(q)
that depends on the fundamental variables, which
we now take to be discrete rather than continuous,
the average over all con� gurations is written as

j = 1
Z

j
j(qj)exp( bH(qj))

It is impossible to sum over all con� gurations, but
it is found that the way that MC method samples the
phase space of con� gurations is good enough to
give reasonably accurate values of ensemble
averages. This statement is proved by the fact that
ensemble averages and their standard deviations do
not depend on the number of MC steps used in a
simulation within the usual limits of statistical noise.

The free energy is related to the partition
function by

F
1
b

ln Z

The problem we face in the calculation of F is
that the partition function cannot be computed in
a simulation, since, unlike calculations of
ensemble averages, it does require calculation of
all terms, including those that are of low
probability. The calculation of the free energy
requires a method that is based on the reliable
computation of ensemble averages, and the
method of thermodynamic integration provides
this possibility.

The method of thermodynamic integration
requi res a reference point of a model
Hamiltonian for which we know the corresponding
free energy exactly. We label this model
Hamiltonian as H0, and the corresponding free
energy is F0. We now de� ne the Hamiltonian Hl as
a mixture of the actual and model Hamiltonians:

Hl = lH + (1 l)H0 = H0 + l(H H0) = H0 + lDH

where l is the mixing parameter, which varies in
value between 0 and 1. The last term de� nes the
difference quantity DH, which we will use below.
We also note, for reference below, that the
differential is simply given as qHl/ql = DH.

The free energy can be represented by the
integral

F F0

1

0

Fl

l
dl

where Fl is the free energy corresponding to the
Hamiltonian Hl. This can be written in terms of
the partition function:

Zl=
j

exp( bHl(qj))

Fl = 1
bln Zl = 1

bln
j

exp( bHl(qj))

The differential of Fl with respect to l follows
as

Fl

l
1

bZl

Zl

l

1
Zl j

Hl qj

l
exp bHl qj

1
Zl j

DH qj exp bHl qj

DH l

We have written the last line of this equation
explicitly in order to highlight the fact that the
differential of Fl is simply equal to the statistical
average value of DH calculated from a set of
con� gurations corresponding to the mixed
Hamiltonian Hl. The subscript l on DH l

implies that the average is obtained from
con� gurations generated by the Hamiltonian Hl.
Since average quantities can be calculated with
reasonable accuracy, we now have a handle on the
free energy.

For ordering processes, a good model
Hamiltonian is the trivial case of having non-
interacting cations, written mathematically as

H0 = 0

With this choice of model Hamiltonian, we
have

Hl = lH; DH = H

Hence

Fl

l
H l
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This is simply the average energy of a system
subject to the Hamiltonian lH. In practice, it
means running the simulation with interactions
corresponding to the Hamiltonian lH, and then
computing the average energy as if the
Hamiltonian was really given by H. The energy
is calculated using H, but the simulation that
produces the con� gurations is driven by the
Hamiltonian lH.

A system with the Hamiltonian H0 = 0 will
have complete disorder at all temperatures, and
the corresponding free energy F0 will simply be
obtained from the con� gurational entropy of a
system with a random arrangement. If we have
several types of atoms on N symmetrically
equivalent sites, each with fraction xj, we have
the standard result

F0 = Nb 1

j
xj lnxj

Taking together the results for qFl/ql and F0,
the free energy is given as

F F0

1

0

H ldl

The idea then is to perform calculations of the
average H l for many values of l and perform a
numerical integration. The point is that although
the MC simulation does not sample the complete
set of con� gurations, the averages that are used in
the integrals can be calculated with suf� cient
accuracy to enable the free energy to be
calculated with reasonable accuracy.

At � rst sight it appears costly to have to run
the simulations at many values of l in order to
determine the free energy at a single tempera-
ture. However, it turns out that we can exploit
the situation to enable us to calculate the free
energy as a function of temperature at no further
cost. We noted above that when H0 = 0, Hl = lH.
Thus a simulation performed with Hl at
temperature T is equivalent to a simulation
performed with H at temperature Tl = T/l. So
if we perform the integration for values of l
between 0 and l’ for a temperature T, instead of
between 0 and 1, it is equivalent to performing
the integration between 0 and 1 for a temperature
equal to Tl’ = T/l’. At higher values of
temperature the system is more disordered and
the free energy is closer to the value for a
random system. Therefore there is less variation
for different values of l, and the number of

points needed to get a good numerical integra-
tion is smaller. Thus if we run the simulation at a
given temperature for many values of l, we can
obtain the free energy as a function of
temperature for a wide range of temperatures
above the notional temperature of the simulation.
Thus we make full use of all the data generated
in the simulation. Moreover, for each value of l
we can also calculate other ensemble averages,
such as the order parameter or susceptibility,
which will correspond to the values at a
temperature of Tl. The only limitation is that
for numerical integration over l it is better to run
the separate simulations with equal increments
of l, which means that the resultant analysis will
have uniform steps of 1/T on the temperature
scale.

In the implementation of the method in Ossia99
the MC simulation is run for a predetermined
number nl of equally-spaced values of l between
1/nl and 1 for a temperature T. The nth value is
equal to ln = n/nl, and, following the discussion
in the previous paragraph, corresponds to a
temperature Tn = T/ln = nlT/n. The MC
simulation gives the energy El = Hl l for
simulations performed with the Hamiltonian lH
for all values of l at temperature T. A separate
program is used to perform a numerical integra-
tion of the values of El/l, which are equivalent to
H l, for all values of l to give the free energy

for temperature T. For temperature Tn , the
numerical integral is performed for values of l
up to ln to give the free energy for this
temperature.

Finally, we remark that since we have obtained
both E(T) and F(T) directly from the MC
simulations via the thermodynamic integration,
these two quantities can be combined to give the
entropy S(T) using the standard thermodynamic
relation:

S T
E T F T

T

Thus we can obtain a complete description of
the thermodynamic properties of a system.

This method was used to study the composi-
tion and temperature dependence of the thermo-
dynamic functions for Al/Si ordering on
tetrahedral sites of the feldspar structure
(Myers et al., 1998). Some validation of the
results was provided by the Cluster Variation
Method calculations of Vinograd and Putnis
(1998, 1999) and Vinograd et al. (2001).
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Thermodynamics of cation ordering in spinel
From the MC simulations of spinel described
earlier, the thermodynamic functions were
calculated using thermodynamic integration
(Warren et al., 2000a,b). These are shown in
Fig. 13. The temperature-dependence of the
enthalpy is compared with experimental data
from Navrotsky and Klappa (1987) in this � gure.
The baseline values have been adjusted to enable
the experimental and theoretical curves to be
plotted together (note that the baseline values are
not de� ned on an absolute scale in either case).

The important point of comparison between
experiment and theory is the changes of energy
with temperature, and in this regard the
agreement is very good, aside from the highest-
temperature datum which does not follow the
trend of the other data. In Fig. 13 the entropy is
compared with the only experimental datum
available, namely an indirect determination at
the single temperature of 1000 K based on phase
diagram data (Wood et al., 1986). The agreement
between this one measurement and the MC
results is remarkably good. Taken with the
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FIG. 13. Thermodynamic functions, entropy and enthalpy, for the Mg/Al ordering process in spinel calculated by MC
simulations, compared with the few experimenta l data available. The experimental data for enthalpy are from
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agreement between the measured and calculated
temperature dependence of the order parameter
(discussed earlier, Fig. 7), we are able to
conclude that the procedure of using a para-
meterized Hamiltonian that is obtained from ab
initio quantum mechanical calculations is able to
reproduce the experimental behaviour remark-
ably well. It is important to appreciate that no
experimental data were used in any respect in the
determination of the model Hamiltonian, in
contrast to empirical potentials, which at some
stage in their development have been tuned
against experimental data. The point, though, is
not just that the method gives good agreement
with experimental data, but that it can be used to
obtain new science insights that cannot be
deduced from experiment. We now describe
one of these insights.

The temperature-dependence of the free energy
and order parameter calculated by the MC
simulations were � tted by a classical Landau
free energy function appropriate for non-conver-
gent ordering (Carpenter et al., 1994; Carpenter
and Salje, 1994; Warren et al., 2000b). This
resembles the procedure that is often carried out
in experimental studies, and was primarily carried
out here in order to provide a numerical test of the
practice. In particular, we have data for both free
energy and order parameter, whereas it is more
usual to have experimental data only for the order
parameter. The � tting was carried out only for
temperatures above a minimum temperature in
order to avoid � tting to data where effects due to
the second law of thermodynamics not otherwise
incorporated into the Landau theory become
important. Two values of the minimum tempera-

ture were tested. The results are shown in Fig. 14,
from which it can be seen that the Landau
function (Carpenter et al., 1994; Carpenter and
Salje, 1994) provides a very good description of
the high-temperature behaviour of the thermo-
dynamics associated with the cation ordering in
spinel. It is not common to measure free energies,
and free energy functions are usually � tted only to
experimental data that depend on some derivative
of the free energy. In the present case, we have
been able to combine both the free energy and a
derivative of the free energy in the � tting of a
particular function, and have shown that the
Landau description works very well. This
provides a justi� cation for � tting experimental
measurements of the order parameter to a Landau
formalism.

Entropy of the pyrope^grossular solid solution

The entropy associated with variation of the short-
range order across the pyrope–grossular solution
calculated in the MC simulations is shown in
Fig. 15 (Bosenick et al., 2000). For the more
dilute solid solutions there is little variation in the
entropy with temperature, but for compositions of
~1:1 Mg:Ca the entropy falls considerably on
cooling due to the formation of considerable
short-range order. It is interesting to compare the
scale of the temperature dependence seen in the
entropy with that for the calculated MAS-NMR
spectra described earlier and shown in Fig. 8. It is
clear that the entropy is far more sensitive to the
development of short-range ordering than the
MAS-NMR results, a feature that is also seen in
the pyroxene solid solution (discussed next).
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Entropy of the diopside^Ca-Tschermak solid solution

Studies of the reaction (Gasparik, 1984)

3 CaAl2SiO6 > Ca3Al2Si3O12 + 2 Al2O3

Ca-Tschermack Grossular Corundum

in the temperature range between 1400 1800 K
have shown that the con� gurational entropy of
Ca-Tschermak is reduced to ~70% of the random
value, Sran = 11.53 J mol 1 K 1.

The temperature dependence of the con� gura-
t ional entropy, S , of the end- member

Ca-Tschermak calculated in the MC simulations
is shown in Fig. 16. Even at temperatures well
above the ordering-phase transition temperature,
short-range ordering of Si/Al in the tetrahedral
sites leads to a strong reduction in the entropy. At
a temperature of 2700 K, which corresponds to
the temperature where the simulated and observed
MAS-NMR intensities of Ca-Tschermak match,
the con� gurational entropy is 7.2 J mol 1 K 1.
Hence, because of the existence of short-range
order, the entropy is reduced to ~65% of the value
for a completely random arrangement of Si/Al
cations. This is in remarkable agreement with the
experimental observation. It is worth noting that
the change in the entropy (~35%) from the
completely random result is signi� cantly larger
than the corresponding change in the MAS-NMR
cluster probabilities (~25% at 2700 K). This is
similar to the case of the garnet solid solution
discussed above.

MC simulations on the solid- solutions
Di75:CaTs25 and Di50:CaTs50 also predict
strong reductions in the con� gurational entropies.
In these members of the solid solution, the changes
in entropy are much more dramatic than the
variation in the MAS-NMR cluster occupancies.
For example, in Di50:CaTs50 at 2700 K, the
reduction in the entropy is 20% from the random
value, but the changes in the MAS-NMR cluster
occupancies are only 2%. In Di75:CaTs25 at
2700 K, the reduction in the entropy is 15%
smaller than the random value, but the variation in
the MAS-NMR cluster occupancies are only ~3%.
The much lower sensitivity of the MAS-NMR
cluster occupancies to short-range ordering than
the sensitivity of the entropy implies that it might
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members of the pyrope–grossular solid solution calcu-
lated by MC simulation (after Bosenick et al., 2000).
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be dif� cult to estimate exact entropy values from
MAS-NMR peak intensities. This is especially true
for cases where MAS-NMR spectroscopy is
sensitive to many different cation clusters
because to � rst and second shell interactions, as
in the case of pyrope-grossular and diopside–
Ca-Tschermak solid-solutions.

Conclusions

We have described an implementation of the MC
method that has been optimized for the study of
cation ordering in complex minerals, exploiting
the potential of parallel computers in the
development of the Ossia99 code. The approach
is to use a parameterized Hamiltonian that
contains pair interactions to any arbitrary
distance, but which can also include site-speci� c
chemical potential terms and multi-site terms.
Calculations performed on a wide range of
systems with different ordering processes have
shown that MC simulations are able to give a
good representation of experimental data.

We have placed particular emphasis on the
ability of MC calculations to give information
about short-range order and thermodynamic
properties. The short-range order can be measured
by MAS-NMR spectroscopy, which gives direct
information about the relative probabilities of
forming small clusters, and these clusters can
easily be calculated in an MC simulation. We
have shown, however, that the direct interpreta-
tion of MAS-NMR data can be dif� cult, and the
MC simulations have a signi� cant role to play in
aiding this interpretation. Moreover, in some
cases it is apparent that the MAS-NMR spectra
are less sensitive to changes in overall order than
the thermodynamic properties. These can be
calculated in the MC simulations using the
method of thermodynamic integration, which, as
we have described in this paper, lends itself to
routine applications.
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